3 research outputs found

    Assembling and (Re)assembling critical infrastructure resilience in Khulna City, Bangladesh

    Get PDF
    Extreme Weather Events continue to cause shocking losses of life and long-term damage at scales, depths and complexities that elude robust and accountable calculation, expression and reparation. Cyclones and storm surges can wipe out entire towns, and overwhelm vulnerable built and lived environments. It was storm surges that was integral to the destructive power of Hurricane Katrina in the USA (2005), Typhoon Haiyan in the Philippines (2013), as well as Cyclone Nargis (2008) and the 1970 Bhola Cyclone in the Bay of Bengal. This paper report on work which concerns itself with the question of, given what we know already about such extreme weather events, and their associated critical infrastructure impacts and recovery trajectories, what scenarios, insights and tools might we develop to enable critical infrastructures which are resilient? With several of the world’s most climate vulnerable cities situated in well-peopled and rapidly growing urban areas near coasts, our case study of Khulna City speaks globally into a resilience discourse, through critical infrastructure, disaster risk reduction, through spatial data science and high visualisation. With a current population of 1.4 million estimated to rise to 2.9 million by 2030, dense historical Khulna City may well continue to perform a critical role in regional economic development and as well as a destination for environmental refugees. Working as part of the EU—CIRCLE consortium, we conduct a case study into cyclones and storm surges affecting the critical infrastructure then discuss salient developments of loss modelling. The research aims to contribute towards a practical framework that stimulates adaptive learning across multiple stakeholders and organisational genres

    Spectrum of mutations underlying Propionic acidemia and further insight into a genotype-phenotype correlation for the common mutation in Saudi Arabia

    No full text
    Propionic acidemia (PA) is an autosomal recessive metabolic disorder. PA is characterized by deficiency of the mitochondrial enzyme propionyl CoA carboxylase (PCC) that results in the accumulation of propionic acid. Alpha and beta subunits of the PCC enzyme are encoded by the PCCA and PCCB genes, respectively. Pathogenic variants in PCCA or PCCB disrupt the function of the PCC enzyme preventing the proper breakdown of certain amino acids and metabolites. To determine the frequency of pathogenic variants in PA in our population, 84 Saudi Arabian patients affected with PA were sequenced for both the PCCA and PCCB genes. We found that variants in PCCA accounted for 81% of our cohort (68 patients), while variants in PCCB only accounted for 19% (16 patients). In total, sixteen different sequence variants were detected in the study, where 7 were found in PCCA and 9 in PCCB. The pathogenic variant (c.425G > A; p.Gly142Asp) in PCCA is the most common cause of PA in our cohort and was found in 59 families (70.2%), followed by the frameshift variant (c.990dupT; p.E331Xfs*1) in PCCB that was found in 7 families (8.3%). The p.Gly142Asp missense variant is likely to be a founder pathogenic variant in patients of Saudi Arabian tribal origin and is associated with a severe phenotype. All variants were inherited in a homozygous state except for one family who was compound heterozygous. A total of 11 novel pathogenic variants were detected in this study thereby increasing the known spectrum of pathogenic variants in the PCCA and PCCB genes. Keywords: Propionic acidemia, PCCA, PCCB, Founder mutation, Genotype-phenotype correlatio

    Bibliography

    No full text
    corecore